Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Build Simul ; : 1-20, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2301466

ABSTRACT

This paper presents an EnergyPlus-based parametric analysis to investigate the infection risk of Coronavirus Disease 2019 (COVID-19) under different mechanical ventilation scenarios for a typical medium-sized office building in various climate zones. A Wells-Riley (WR) based Gammaitoni-Nucci (GN) model was employed to quantitatively calculate the airborne infection risk. The selected parameters for the parametric analysis include the climate zone, outdoor air fraction, fraction of infectors, quanta generation rate, and exposure time. The loss and deposition of particles are not considered. The results suggest that the COVID-19 infection risk varies significantly with climate and season under different outdoor air fraction scenarios since the building heating and cooling load fundamentally impacts the supply airflow rate and thus directly influences the amount of mechanical ventilation, which determines the dilution ratio of contaminants. This risk assessment identified the climate zones that benefit the most and the least from increasing the outdoor air fraction. The climate zones such as 1A (Honolulu, HI), 2B (Tucson, AZ), 3A (Atlanta, GA), and 7 (International Falls, MN) are the most energy-efficient locations when it comes to increasing the outdoor air fraction to reduce the COVID-19 infection risk. In contrast, the climate zones such as 6A (Rochester, MN) and 6B (Great Falls, MT) are the least energy-efficient ones. This paper facilitates understanding a widely recommended COVID-19 risk mitigation strategy (i.e., increase the outdoor airflow rate) from the perspective of energy consumption. Electronic Supplementary Material: Supplementary material is available for this article at 10.1007/s12273-022-0937-5 and is accessible for authorized users.

2.
Building simulation ; : 1-20, 2022.
Article in English | EuropePMC | ID: covidwho-2046391

ABSTRACT

This paper presents an EnergyPlus-based parametric analysis to investigate the infection risk of Coronavirus Disease 2019 (COVID-19) under different mechanical ventilation scenarios for a typical medium-sized office building in various climate zones. A Wells-Riley (WR) based Gammaitoni-Nucci (GN) model was employed to quantitatively calculate the airborne infection risk. The selected parameters for the parametric analysis include the climate zone, outdoor air fraction, fraction of infectors, quanta generation rate, and exposure time. The loss and deposition of particles are not considered. The results suggest that the COVID-19 infection risk varies significantly with climate and season under different outdoor air fraction scenarios since the building heating and cooling load fundamentally impacts the supply airflow rate and thus directly influences the amount of mechanical ventilation, which determines the dilution ratio of contaminants. This risk assessment identified the climate zones that benefit the most and the least from increasing the outdoor air fraction. The climate zones such as 1A (Honolulu, HI), 2B (Tucson, AZ), 3A (Atlanta, GA), and 7 (International Falls, MN) are the most energy-efficient locations when it comes to increasing the outdoor air fraction to reduce the COVID-19 infection risk. In contrast, the climate zones such as 6A (Rochester, MN) and 6B (Great Falls, MT) are the least energy-efficient ones. This paper facilitates understanding a widely recommended COVID-19 risk mitigation strategy (i.e., increase the outdoor airflow rate) from the perspective of energy consumption. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s12273-022-0937-5 and is accessible for authorized users.

3.
ASHRAE Transactions ; 127:43-52, 2021.
Article in English | ProQuest Central | ID: covidwho-1980951

ABSTRACT

This study investigated the impacts of the COVID-19 pandemic on the electricity consumption of a university dormitory building in the southern US. The historical electricity consumption data of this university dormitory building and weather data of an on-campus weather station, which were collected from January 1st, 2017 to July 31st, 2020, were used for analysis. Four inverse data-driven prediction models, i.e, Artificial Neural Network, Long Short-Term Memory Recurrent Neural Network, eXtreme Gradient Boosting, and Light Gradient Boosting Machine, were exploited to account for the influence of the weather conditions. The results suggested that the total electricity consumption of the objective building decreased by nearly 41% (about 276,000 kWh (942 MMBtu)) compared with the prediction value during the campus shutdown due to the COVID-19. Besides, the daily load ratio (DTR) varied significantly as well. In general, the DTR decreased gradually from 80% to nearly 40% in the second half of March 2020, maintained on a relatively stable level between 30% to 60% in April, May, and June 2020, and then slowly recovered to 80% of the normal capacity in July 2020.

4.
Build Environ ; 207: 108440, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1466084

ABSTRACT

The objectives of this study are to investigate building professionals' experience, awareness, and interest in occupant health in buildings, and to assess the impact of the COVID-19 pandemic on their opinions, as well as to compare the research on occupant health in buildings to professionals' opinions. To address these objectives, a mixed research methodology, including a thorough review of the literature (NL = 190) and an online survey (NS = 274), was utilized. In general, there is an increasing research interest in occupant health and a heightened interest in health-related projects, among professionals, following the COVID-19 pandemic. Specifically, among the nine different building attributes examined, indoor air quality was the most researched building attribute with a focus on occupant health and was also presumed to be the most important by the professionals. Professionals considered fatigue and musculoskeletal pain to be the most important physical well-being issues, and stress, anxiety, and depression to be the most important mental well-being issues that need to be the focus of design, construction, and operation of buildings to support and promote occupant health, while eye-related symptoms and loss of concentration were the most researched physical and mental well-being symptoms in the literature, respectively. Finally, professionals indicated that COVID-19 pandemic had significant effect on their perspectives regarding buildings' impact on occupant health and they believed future building design, construction and operation will focus more on occupant health because of the pandemic experience.

5.
Build Environ ; 188: 107480, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-959613

ABSTRACT

Even before the COVID-19 pandemic, people spent on average around 90% of their time indoors. Now more than ever, with work-from-home orders in place, it is crucial that we radically rethink the design and operation of buildings. Indoor Environmental Quality (IEQ) directly affects the comfort and well-being of occupants. When IEQ is compromised, occupants are at increased risk for many diseases that are exacerbated by both social and economic forces. In the U.S. alone, the annual cost attributed to sick building syndrome in commercial workplaces is estimated to be between $10 billion to $70 billion. It is imperative to understand how parameters that drive IEQ can be designed properly and how buildings can be operated to provide ideal IEQ to safeguard health. While IEQ is a fertile area of scholarship, there is a pressing need for a systematic understanding of how IEQ factors impact occupant health. During extreme events, such as a global pandemic, designers, facility managers, and occupants need pragmatic guidance on reducing health risks in buildings. This paper answers ten questions that explore the effects of buildings on the health of occupants. The study establishes a foundation for future work and provides insights for new research directions and discoveries.

SELECTION OF CITATIONS
SEARCH DETAIL